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Abstract. The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems 
of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a 
solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of 
wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann 
equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics 
accelerators using the CUDA programming technology.

INTRODUCTION

A drop lying on a horizontal solid surface is immovable. However, if the properties of the surface material 
change along the coordinate, the wettability level can also change. This can be achieved by gradient coatings. In this 
case, contact angles also vary in coordinate. Therefore, the drop can no longer be in equilibrium and begins to move.

The wetting angle is closely related to the magnitude of the interaction forces between the liquid molecules and 
the solid surface. In general, the contact angles also depend on the velocity of the contact line along the surface.

For a non-stationary motion of a drop, the problem should be modeled only numerically. In this case, it is 
necessary to describe fluid flows with surface tension at the liquid-gas interface and interaction with a solid surface. 
For the computer simulation of such a problem, the lattice Boltzmann equations method (LBM), first proposed in 
[1,2], is used.

LATTICE BOLTZMANN METHOD

For the computer simulation of such a problem, the variant of the lattice Boltzmann equation method (LBM), 
described in [3-8], was used. For the three-dimensional model D3Q19 [9], 19 possible particle velocity vectors kc

are allowed, for which the values of velocity modulus are assumed to be 0kc , /h t or 2 /h t , where h is 
the grid spacing, and t is the time step. Then, the evolution equation for the distribution functions kN can be 
written in the form

( , ) ( , ) ( )k k k k kN t t t N t N Nx c x , (1)

where ( ( , ) ( , )) /eq
k kkN N tu x is the collision operator in the form of BGK, is the characteristic 

relaxation time to local equilibrium. The dimensionless relaxation time defines the kinematic viscosity 
( 1/ 2) t . To account for the volume forces (internal and external), the Exact Difference Method (EDM) is 

used [6-8]
( , ) ( , ) ( , )eq eq

k k kN t N Nx u u u . (2)
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Here, the value of the velocity after the action of the force F during the time step is equal to 

/tu u u F . The values of equilibrium distribution functions eq
kN are calculated as [10]

2 2

2( , ) 1
22

keq k
kkN w

c uc u uu . (3)

Here 2( / ) / 3x t is the "kinetic temperature of LBE pseudo-particles. For the model D3Q19, the weight 
coefficients are equal to 0 1/ 3w , 1 6 1/18w and 7 18 1/ 36w [9]. The fluid density and velocity u at the 
node are calculated by the formulas 

0

b
kk

N , (4)

1

b
k kk
Nu c . (5)

The physical velocity of fluid should be calculated at half time step [11] as / 2u u u .
To describe the equation of state (EOS) in the form ( , )P T , the pseudopotential model [12] is used in which 

internal forces UF acting on the substance at the lattice nodes are introduced. Here, ( , )U P T is the 
pseudopotential. The numerical approximation of the gradient of the pseudopotential is very important. In [3,4], 
Kupershtokh et al. proposed the isotropic finite-difference approximation of the gradient operator that can be written 
in vector form as 

21( ) (1 2 ) ( ) ( ) ( )k k
k k k k

k k

G G
A A

bh G G
F x x x e e x e e . (6)

The function was specially defined as 
2 2 ( , )sU c p T . (7)

Note, the pseudo-potential 0U in the region of stability of calculations [8]. For three-dimensional model
D3Q19, the values of coefficients are different for basic directions kG G and for diagonal directions / 2kG G
to ensure the isotropy of space. The value of the coefficient 3b for D3Q19 model. In particular cases, the 
“combined” approximation (6) becomes “mean value” approximation [12] for 0.5A and “local” approximation 
[13] for 0A [4]. This so-called “combined” approximation was compared in [3,4] with “local” and “mean-value” 
approximations. The “combined” approximation is more stable and allow one to reach the values of density ratio up 
to 610 for quasi-stationary flat liquid-vapor interface. 

We used the van der Waals equation of state written in the reduced variables
28 3

3
TP . (8)

Here, cr cr cr/ , ,p p p T T T are the reduced variables, cr cr cr, ,p T are the pressure, density and 
temperature at the critical point. The value 0.152A was obtained in [4] for van der Waals EOS as the optimal 
value for which the coexisting curve (binodal curve) simulated by LBM coincides best with the theoretical results 
(Maxwell curve). 

The effect of a solid surface on the fluid is simulated by the forces of interaction between the fluid and solid 
surface nodes, which describe the degree of wetting and the magnitude of the contact angles. These forces act on the 
node x belonging to the fluid from the side of the nearest nodes representing a solid surface (see Fig. 1). The simple 
model for these forces has the form [14, 15]

eff( ) ( ) ( )k k k kBwF x x x e e . (9)
Here, eff is the effective reduced density of solid surface, B is the parameter of interaction. In fact, only the 

product effB determines the forces and, accordingly, the wettability level and the value of the contact angle.
The shapes of static drops on the solid wall at the different values of wettability parameter are shown in Fig. 2. 

For the temperature 0.7T , 0.374B and eff 1, the static contact angle is equal to 90 (see Fig. 3).
Thus, contact angles are not prescribed in lattice Boltzmann method but are simulated in natural way.
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FIGURE 1. Interaction forces ( )kF x between fluid and solid wall

FIGURE 2. The shapes of static drops on the solid wall at the different levels of wettability

FIGURE 3. Static contact angle for drops on horizontal solid partly wettable surface vs. parameter of interaction B .

0.7T , eff 1
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PARALLEL GPU CALCULATIONS

The calculations are carried out on a supercomputer "Supermicro 4027GR" based on graphics processors (GPU) 
(6 GTX Titan-Black modules and 2 GTX Titan-Xp modules). The total number of available stream processors 
(cores) of the computer is more than 30,000. Parallel calculations are performed simultaneously on all cores of 
several GPUs depending on a specific problem solved. The total amount of fast internal memory in GPUs is 60 GB. 
The internal memory of the GPU is an order of magnitude faster than the computer's RAM. For parallel 
programming we use the CUDA (Compute Unified Device Architecture) technology.

THE RESULTS OF COMPUTER SIMULATIONS

The results of the three-dimensional modeling of a drop moving along a horizontally partly wettable wall of the 
rectangular channel with a wetting gradient are shown in Fig. 4. The dependence of the effective reduced density on 
the coordinate is assumed to be linear

eff 0.95 0.00037x . (10)
The non-slip boundary conditions were taken on the solid wall 0z . For this purpose we use the well-known 

and quite simple “bounce-back” rule. The periodic boundary conditions were in y direction. 

(a) (b) (c)

FIGURE 4. Droplet flow along rigid surface with variable wettability (10). Lattice size is 512×272×160. 
0.7T . t 2000 (a), 20000 (b), 50000 (c)

The boundary of the central vertical section ( 136y ) of a moving drop (Fig. 5) was obtained by computer 
processing of the density field of matter in this section (Fig. 6). The motion of the droplet along the x axis arises 
because the advancing contact angle ad is less than the receding one re , since the degree of wettability increases 
with increasing coordinate x in accordance with (10). In this case, the relation is satisfied ad recos cos .

FIGURE 5. The boundary of a moving drop in the central vertical section 136y . t 20000

(a) (b) (c)

FIGURE 6. The density distribution for the moving drop in the central vertical section 136y .
t 2000 (a), 20000 (b), 50000 (c)
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The coordinates of the leading ( 2x ) and trailing ( 1x ) edges of contact line for the drop moving on the horizontal 
surface with the gradient of wettability are shown in Fig. 7. As the droplet moves to the area of increased wettability, 
its height decreases.

FIGURE 7. The coordinates of the leading ( 2x ) and trailing ( 1x ) edges of contact line of the moving drop. The drop height H

A dimensionless number that characterizes the importance of gravitational forces compared to surface tension 
forces is the Bond number

2
Bo gH . (11)

The Bond number in dimensionless variables has the form
2

Bo gH
k

. (12)

Here, the dimensionless coefficient
2

cr

cr

p tk
h

(13)

introduced in [4,8] plays an important role in the stability of simulations. For reasonable choice 3/ ~ 10h t m/s, 
we have the value ~ 0.01k for argon and for some other fluids. For simulations shown above, the temperature is

0.7T , the density is 2.14 , the surface tension is cr/ ( ) 3.3p h [14], the initial height of drop is

0 55H , the value of gravity 2 / 0.000005g g t h . Hence, the Bond number is equal to Bo 1.
The ratio of the magnitude of the viscous friction forces on a solid surface to the capillary forces is defined by 

capillary number 

ad re
Ca

(cos cos )
V . (14)

For dimensionless variables we have 

ad re
Ca

(cos cos )
V

k
. (15)

For kinematic viscosity 0.07 and the drop velocity 0.0045V , the capillary number in our simulations is
Ca ~ 0.03 .
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CONCLUSION

This variant of lattice Boltzmann method allows one to simulate the interfaces between liquid and vapor phases. 
The LBE method is applicable for simulating the multiphysics problems of flows with free boundaries, taking into 
account the viscosity, surface tension, evaporation and wetting degree of a solid surface. 

The interaction forces between nodes of fluid and rigid wall define the degree of wetting and the magnitudes of 
the contact angles. 

Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability 
is carried out. The initial spreading of a drop over the surface is determined by the Bond number Bo . The speed of 
the droplet motion along the surface is related to the dimensionless parameter Ca (the capillary number). 

The LBE method can be easily parallelized on multiprocessor graphics accelerators using the CUDA 
programming technology.
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